
R-LGP: A Reachability-guided Logic-geometric Programming
Framework for Optimal Task and Motion Planning

on Mobile Manipulators

Kim Tien Ly1, Valeriy Semenov1, Mattia Risiglione2, Wolfgang Merkt1, Ioannis Havoutis1

Abstract— This paper presents an optimization-based solu-
tion to task and motion planning (TAMP) on mobile ma-
nipulators. Logic-geometric programming (LGP) has shown
promising capabilities for optimally dealing with hybrid TAMP
problems that involve abstract and geometric constraints.
However, LGP does not scale well to high-dimensional systems
(e.g. mobile manipulators) and can suffer from obstacle avoid-
ance issues. In this work, we extend LGP with a sampling-
based reachability graph to enable solving optimal TAMP
on high-DoF mobile manipulators. The proposed reachability
graph can incorporate environmental information (obstacles)
to provide the planner with sufficient geometric constraints.
This reachability-aware heuristic efficiently prunes infeasible
sequences of actions in the continuous domain, hence, it
reduces replanning by securing feasibility at the final full
trajectory optimization. Our framework proves to be time-
efficient in computing optimal and collision-free solutions, while
outperforming the current state of the art on metrics of success
rate, planning time, path length and number of steps. We
validate our framework on the physical Toyota HSR robot and
report comparisons on a series of mobile manipulation tasks of
increasing difficulty.

I. INTRODUCTION

Task and motion planning (TAMP) is the process of end-
to-end decision-making that takes a given task as input
and outputs a sequence of robot configurations to complete
the task. While task planning focuses on high-level task-
oriented strategies, motion planning refers to low-level con-
trol algorithms that determine the feasibility of robot motion
and the continuity considering actuation and joint limits,
environmental obstacles, or uncertainties. These methods
take into account the variations of sequences of actions that
can lead to the desired goal. Therefore, TAMP planners must
address both task-level and motion-level requirements, which
can be solved either independently or jointly.

A major challenge in TAMP is that high-dimensional
geometric constraints in motion control (kinematics, joint
limits, reachability, etc.) can limit the effectiveness of
high-level strategies. The problem becomes more complex
with long-horizon tasks, higher-degrees-of-freedom robots,
or multiple–possibly dynamic–obstacles. Therefore, the de-
liberative function (high-level task planner) should either be
informed or have sufficient restrictions on the robot’s phys-
ical limitations to produce feasible solutions. Consequently,
TAMP involves problems that require the integration of both

1K. T. Ly, V. Semenov, W. Merkt and I. Havoutis
are with the Dynamic Robot Systems (DRS) group,
Oxford Robotics Institute, University of Oxford. Email:
{ktien,valeriy,wolfgang,ioannis}@robots.ox.ac.uk.

2M. Risiglione is with Istituto Italiano di Tecnologia. Email:
mattia.risiglione@iit.it.

Fig. 1: Physical HSR performing R-LGP solution for table
clearing task. The captured actions include grabbing knob,
opening/closing drawer, picking object, dropping object.

high- and low-level planning and TAMP research gener-
ally aims to effectively combine both artificial intelligence
techniques in task planning and advanced motion planning
techniques to tackle such problems.

In this paper we propose a novel TAMP approach to
solve sequential decision-making applications using logic-
geometric programming (LGP) [1]. Our framework generates
optimal plans for complex robot tasks, in contrast to current
approaches that generate solely feasible solutions, for ex-
ample, the well-known TAMP solver PDDLStream [2]. Our
approach tightly integrates a reachability graph with LGP and
allows us to achieve robust, collision-free and kinematically-
efficient solutions to LGP on high-dimensional mobile ma-
nipulators. We explore the efficacy of our framework in a
range of existing TAMP problems of increasing difficulty
and report results on success rates, planning times and path
lengths. Furthermore, we validated on a physical robot, the
Toyota Human Support Robot (HSR), aiming at realistic and
practical applications, where geometry and kinematics must
be respected.

Our main contributions are (1) a LazyPRM-inspired graph
for motion planning on floating-based manipulators, (2) a
reachability graph serving as symbolic and motion guid-
ance for the LGP planner, (3) a kinematically-effective
optimization-based system for TAMP on mobile manipu-
lators. Our novel TAMP approach is a Reachability-guided
Logic-geometric Programming framework, in short, R-LGP.

II. RELATED WORK

A. Satisfactory TAMP
The main challenge in combining task and motion plan-

ning is their hybrid nature. While task planning involves
discrete task specifications, motion planning is typically
solved in continuous space. Task and motion planning are
traditionally combined on a level basis, which can be decou-
pled or integrated. Accordingly, each layer will keep its own
level of abstraction and the TAMP model should be able
to translate knowledge between the two levels. Given the
introduction of STRIPS (Stanford Research Institute Problem
Solver) [3], robot planning was initially studied with a de-
coupled hierarchical structure [4]. The approach in this early
work assumes that motion control can solve all high-level
actions without alternative backtrack solutions. Meanwhile,
integrated TAMP [5] considers failures and has the ability to
replan to make sure that the strategy is executable. Common
methods are taking one of the two parts as the base plan and
solving the other level accordingly. For example, Srivastava
et al. [6] introduces a TAMP method that backtracks and
finds alternative task plans if the motion solver fails. Such
approach usually discretizes the continuous space to bring
it to symbolic planning. The method can utilize off-the-
shelf planners and makes use of state-of-the-art techniques.
TMKit [7] is introduced as the first open-source framework
to implement such a structure, based on [8][9]. There is an
opposite approach where the task search space is bounded by
sampling the continuous workspace [10]. Recently, Kim et al.
[11] introduced a reachability tree-based sampling algorithm
that pre-generates goal state to bias action search. Given that
task planning is usually in a finite domain, having to re-plan
the task sequences is considered to produce a lower cost
compared to continuously checking geometrical feasibility.

PDDLStream [2] extends Planning Domain Definition
Language (PDDL)[12] by using streams to enable sampling
procedures. This work proves to be a modular and domain-
independent approach to TAMP.

B. Optimal TAMP
To lower complexity, TAMP approaches usually tackle

task and motion planning separately and focus more on
completeness. Solving such problems optimally is difficult
because the optima of each layer might not be the overall
optimal solution. An example can be found in [13], where
the authors used a two-layer hierarchical structure of opti-
mization to find asymptotically optimal solutions to coverage
planning task. Kongming [14] was the first approach to
integrate continuous control variables in an activity planner.
The method combines a Planning Graph for discrete actions
and Flow Tubes for continuous actions, which was modeled
as a mixed logic linear (non-linear) program. The method
ties to a fixed time discretization, which is difficult to apply
on long-horizon tasks. However, it brings up the need for
a tightly coupled task and motion planning framework in
robotics applications.

In 2015, Toussaint [1] introduced the logic-geometric
programming (LGP) algorithm, which formulates TAMP as
a mathematical program that uses optimization methods to
find locally optimal plans instead of solely feasible ones.

The task in this work is to build the highest stable tower
from a list of blocks and boards. By bringing logic into
geometry, LGP does not need to arbitrarily discretize the
continuous space and directly optimize continuous solutions.
Variants of LGP papers include a heuristics method for long-
horizon tasks [15][16], a dynamic LGP for human motion
prediction [17] or an approximation solver for cooperative
manipulation [18]. Other optimization-based mathematical
approaches to TAMP is constraint programming (CP) [19]
[20] and mixed integer programming (MIP) [21] [20] [22].
CP is a more general term than MIP, Booth et al. [20]
did a comparison between MIP and CP and concluded that
inference-based CP is better than relaxation-based MIP in
terms of time and solution quality. This work is tested on
simulation and claims to be case-sensitive. MIP is originally
a decision making and scheduling method that solves non-
convex problems. When it comes to robotics planning, this
optimization solution can help to capture discrete decisions
with integer variables. Deits et al. [23] introduced a planner
that uses MIP to generate globally optimal sequences of
footsteps in difficult terrain. Multi-robot task planning is
a common application of MIP [24][25]. In short, these
mathematical techniques allow encoding logical decisions
and geometric constraints in nonlinear optimization models
without backtracking, targeting globally optimal strategies.

As more interest has been driven to solving TAMP op-
timally, besides mathematical programming, a recent work
from Thomason et al. [26] proposes asymptotically optimal
decision-making using informed tree search. The model
effectively combines constraint-based symbolic planning,
distance-based predicate representation, and batch-sampling-
based optimal motion planning to solve a hybrid state space
problem. Earlier this year, inspired by LGP, Sleiman et al.
[27] introduced an offline bilevel optimization planner that
solves multi-contact problems on loco-manipulation system.
The system successfully plans whole-body motion for a
quadrupedal mobile manipulator to open/close doors and
dishwashers.

III. PROPOSED FRAMEWORK OVERVIEW

In LGP, the authors solve TAMP with three levels of
approximation and switches between symbolic search and
configuration optimization that is conditioned by symbolic
decisions. While level 1 decides the symbolic sequence,
levels 2 and 3 optimize keyframes (e.g. grasp poses) and
full path respectively. An extended work, RHH-LGP [15],
proposes a heuristic to guide the symbolic search in level
1. The kinematic reachability here, which is an important
factor to the feasibility of the action sequences, is fixed or
calculated using Cartesian distance or the length of robot’s
links. In this work, we extend LGP with a sampling-based
reachability graph to enable solving optimal TAMP on high
degrees-of-freedom (DoF) mobile manipulators. The pro-
posed reachability graph can also incorporate environmental
information (obstacles) to provide the planner with suffi-
cient geometric constraints. This reachability-aware heuristic
efficiently prunes infeasible sequences of actions in the
continuous domain. Hence, it reduces replanning by securing
feasibility at the final full trajectory optimization.

Algorithm 1 Reachability-guided LGP

Require: symbolic goal g, initial symbolic state s0, initial
configuration x0, world W

1: s← s0
2: while not s ∈ Sgoal(g) do
3: PathFound ← False
4: SymbolicSearch ← {s}
5: Switch ← ø
6: Path ← ø
7: while not PathFound do
8: // Construct reachability graph
9: RG = constructRG(W)

10: // Symbolic search
11: n ← SymbolicSearch.argmin(heuristicCost(RG))
12: Switch.append(n)
13: if not n ∈ Sgoal(g) then
14: SymbolicSearch.append(n.expand())
15: // Optimize over kinematic switches
16: if SwitchOptimization(Switch) then
17: waypoints ← getWaypoints(RG, n)
18: Path.append(waypoints)
19: // Optimize over the full path
20: if PathOptimization(Path) then
21: PathFound ← True
22: s← n

Our reachability-guided LGP (R-LGP) pipeline is de-
scribed in Algorithm 1. The proposed reachability graph
serves as a guide to the first (symbolic) and final (full
path) layers in LGP. In the pipeline, nodes chosen from the
symbolic search, with the help of our reachability heuristic,
will be sent to the kinematic switch optimization. Once a
feasible sequence is found, the system will solve the full
path optimization with the guided path from the reachability
graph. The main contribution of the graph is twofold: a) to
provide a heuristic that informs the LGP’s symbolic planner
about kinematics and geometry; b) to provide collision-free
guidance to the LGP’s trajectory optimization at level 3 (full
path), in order to avoid local optima.

IV. REACHABILITY GRAPH

The reachability graph is designed in a LazyPRM-like [28]
manner. We compute the graph with node validation and edge
checking during planning.

A. Graph generation
This section explains the constructRG function in Algo-

rithm 1.
1) Node sampling: Nodes are randomized in task space

x ∈ R3 with uniform distribution U(pmin, pmax). Nodes in
the graph represent end-effector positions of the mobile
manipulator, which sufficiently denotes robot reachability
capability. We validate nodes with a constrained optimiza-
tion formulation. The robot model is defined as a loco-
manipulation system with a floating-based torso as in Eq.
1, where m is the number of DoFs of the manipulator. This
allows the framework to be implemented on either legged or
wheeled mobile platforms. In our work, the mobile platform

is holonomic and does not have any restrictions on translation
or rotation, however, these can be added in as constraints.

q = [qbase, qmanipulator],

where qbase = [xbase, ybase, yawbase],

qmanipulator = [q1, q2, q3, ..., qm].

(1)

The nonlinear optimization formulation for node valida-
tion is defined in Eq. 2, where x0 is the checked node,
representing the reference for the robot end-effector position.
gprec() checks collision between the inspecting node and
the environment, and determines the precondition for the
optimization with M → +∞. This condition removes
unreachable nodes for the sake of processing time. On
the other hand, fkin() computes the end-effector position
x that corresponds to the joint values q. Function g()
defines inequality constraints for joint limits and collision.
In the reachability graph, orientation of the end-effector is
not constrained for flexibility and generality. Our graph is
designed to generate a guiding cost and path for LGP. The
full trajectory optimization will then be done on the final
layer with constraints for the relevant manipulation action.

min
q

M ·max(0, gprec(x0)) + |x− x0|2

s.t. gprec(x0) ≤ 0,

x = fkin(q),

g(q) ≤ 0.

(2)

After collision and inverse kinematics (IK) validation is
performed, the node is added to the node list N as n(x, q, c).
While x ∈ R3 is the end-effector of the robot, q ∈ R3+m

denotes the optimized IK configuration. c equals to the cost
value from the optimization solution. The sampling process
stops when the number of N reaches a predefined number
Nnode.

2) Edge connections: As mentioned, we relax edge con-
nection by assuming all edges are collision-free. For each
sampled node in the list N , we connect to k nearest neigh-
bours without checking for collision. Each edge is added to
the graph with the cost defined in Eq. 3. The cost includes
a combination of weighted Cartesian and configuration Eu-
clidean distances between two end nodes, along with nodes’
costs. wx, wq and wc are the correspondent weights for the
Cartesian, configuration distance and IK cost.

ce = wx · ∥x1 − x2∥+ wq · ∥q1 − q2∥+ wc · (c1 + c2) (3)

B. Path querying
1) Solution library: The reachability graph runs as an

underlying service, waiting for the LGP planner to query two
ends of a path. The service leverages on a library to store
previously computed solutions to avoid replanning for the
same path and save planning time. During symbolic search
in the first LGP’s layer, the planner might iterate through
different logical sequences and query a path in opposite
directions. For instance, a first call may seek a path from
A to B, and subsequently, a solution from B to A. This is
beneficial for tasks at the same levels, where one does not
have a precondition on another action’s completion.
The structure of each solution is shown in (4), where key

contains the start and end point of the path, path and cost
come from the resulting solution with n being the number of
nodes on the path. Noted that the final configuration in path
q1n matches x2 Cartesian pose. Each key is unique across
the library in sorted order, and is used to query the data
bidirectionally. On each call, the service checks the library
and returns the stored solution. If the requested key is new to
the library, the system starts to query the graph for the path.
The answer is then added to the library for future reference.

solution = {key: (x1, x2) , xi ∈ R3

path: [q10, q11, ..., q1n] ∈ Rn×(3+m)

cost: h}
(4)

In this data structure, cost is returned if the pipeline is
querying heuristic cost, which is the function heuristicCost
in Algorithm 1. When the framework reaches the final layer,
path serves as guidance for trajectory optimization, accessed
through the function getWaypoints.

2) Path planning: The reachability graph planner receives
two Cartesian positions for each path querying message key
as starting point and ending point, naming xk and xk+1.
Nodes corresponding to xk and xk+1 are added to the graph
upon solving (2). Collision is checked for connecting these
two nodes to the existing graph. If either xk or xk+1 is
unable to connect to the graph, we start enhancing the
node. Gaussian sampling is applied with in-loop decreased
covariance to find adjacent nodes as waypoints to connect to
the existing graph. During this process, collision checking on
both nodes and edges is performed to ensure a meaningful
enhancement.

We use Dijkstra for finding the shortest path in the graph.
We verify the path by checking collisions on all connected
edges. We linearly interpolate the trajectory in configuration
space with a predefined number of steps L. An edge with a
detected collision is removed from the graph and replanning
is triggered. In the case that any node loses all connections
due to edge removal, it will be enhanced with the same
method as starting/ending node enhancement. The difference
is that the inspecting node can be replaced with an effective
sampled one, which has the lowest IK cost c and is able to
connect to the graph. In this sense, we ensure that the graph is
fully connected, meaning that no subset is disconnected from
the rest of the graph. During planning, the system updates
the graph with enhancement and edge removal, benefiting
future planning queries.

The flowchart in Fig. 2 shows in detail the path planning
algorithm along with the interactions between the reach-
ability graph and the LGP framework. The heuristic cost
h is used internally in the symbolic search level. Before
entering into the last stage of LGP, we interpolate [qk, qk+1]
(k ∈ [0, T − 1]) with corresponding [qk0, .., qkn] as input
guidance for full path optimization.

V. EVALUATION

A. Simulation evaluation

In order to validate our approach, we propose a set of
simulations and hardware experiments, performed on the
PR2 and HSR robots. Our baseline for comparison is the

Fig. 2: Path querying system in R-LGP.

heuristic-based LGP - RHH-LGP [15]. In addition, we com-
pare our system against PDDLStream [2], the most popular
and ready-to-use TAMP solver. We implemented the adaptive
version of PDDLStream, which claims to outperform all
other approaches for cost-sensitive problems. This allows
us to set a priority on minimizing path length. There is
an optimal flag in PDDLStream solver which determines
whether or not the planner should explore more options
and conclude with the best solution. We name PDDLStream
nonoptimal and PDDLStream optimal for PDDLStream with
optimal set to false and true respectively.

The experiments are designed to address the ability in
accommodating geometric and kinematic constraints in in-
tegrated TAMP problems. We conducted an extensive eval-
uation with 100 runs in simulation for each experiment. All
random tasks are intentionally feasible. The recorded metrics
are:

• Success rate: the number of collision-free TAMP solu-
tions over the total number of runs.

• Planning time: average time taken to get to successful
solutions.

• Path length: average length, in meters, of the robot’s
base trajectory, assuming a floating-base robot.

• Number of steps: average number of steps to complete
the given task. For this metric, we only consider key
switches, e.g. pick, place, which intuitively correspond
to the number of objects.

1) Pick and place: In this scenario, the PR2 robot is asked
to pick and place 3 objects on the tables to the tray. This is
a default TAMP task in the PDDLStream framework and is
widely used in TAMP development [2]. The objects are at
random positions on the table over 100 runs. We set a fixed
table size and all random poses are reachable from one side
of the table.

The results in Fig. 3 show that the PDDLStream optimal’s
solution is better in path length and step count than the
default PDDLStream. Though, the latter achieves a shorter

Fig. 3: Comparison result of the TAMP planners on pick and
place task.

planning time. With PDDLStream solutions, PR2 tends to
travel to the side of the table nearest to the object to pick
it up regardless of reachability. LGP frameworks provide
optimal trajectory by not navigating around the table, hence,
also reduces the execution time. Apart from optimality, as
opposed to PDDLSream, LGP frameworks achieve 100%
success rate. Our R-LGP framework effectively reduces
planning time leveraging the reachability heuristic.

2) Sorting: We increase the complexity of both task
planning and motion planning in this task. The robot is
asked to sort objects into trays with the same colours.
Unlike the classic sorting task, we extend the experiment
to address the reachability and mobility awareness of the
system. In particular, we use larger table tops in this test,
and randomized objects can be out-of-reach from one side of
the table. This task requires TAMP solvers to accommodate
obstacle-free configuration trajectories in solving high-level
tasks, specifically requiring the robot to navigate around the
table. To ensure all tasks are feasible, we constraint the
objects’ randomized locations to be within reachable distance
from at least one side of the table.

In Fig. 4, it is worth noticing that the baseline RHH-LGP
fails to plan a collision-free trajectory in 50% of the cases.
Due to local optima in trajectory optimization, RHH-LGP
planner can only solve tasks where the randomized location
is within reach from the same side to the current position.
This issue then filters runs with shorter path and results in
a shortest average path length. PDDLStream optimal and R-
LGP provide similar quality of final solutions with the same
success rate of 100%. However, the planning time in R-LGP
is significantly reduced from 48s to 2s.

Fig. 5 captures an example of end-to-end TAMP results
for the sorting task with the LGP baseline (a) and our
planner (b). In the figures, the robot’s base trajectory is
shown in yellow line, which also denotes the resulted task
sequence. In RHH-LGP, the planner considers the distance-
based heuristic, hence, decides to sort the green block first.
Meanwhile, our heuristic cost informs the high-level planner
that the robot must go around the table in order to pick up

Fig. 4: Comparison result of the TAMP planners on sorting
task.

(a) RHH-LGP (b) R-LGP

Fig. 5: TAMP results. Grey table is where objects initially
spawn and goal according to objects’ colour. Yellow line is
the robot’s base trajectory, red when in collision.

the green block. Therefore, the decision to pick the blue
block first produces a shorter travelling cost. With the help
of the reachability graph, the symbolic planner can consider
the cost of navigating taking into account reachability ca-
pabilities. In terms of full trajectory optimization, the red
line shown in Fig. 5a is the violation of collision checking
in RHH-LGP. We successfully solve this issue with the
guidance from the reachability graph to the final layer in
LGP, which enables the collision-free path in Fig. 5b.

B. Real robot validation

We validated our framework on a physical HSR. We
implemented 2 tasks of increasing difficulty:

• Sorting task: the robot is asked to pick objects and place
in the correct trays (Fig. 6).

• Table clearing: the task is to put objects from the surface
into the drawer (Fig. 1).

In this real-world experiment, R-LGP proved to
successfully solve a longer-horizon task with table
clearing. The desired symbolic sequence of this mis-

Fig. 6: Physical HSR using R-LGP solver in sorting task.

sion is (take knob, open drawer, pick object, drop object,
take knob, close drawer). Figure 1 provides a visualiza-
tion of the listed behaviours. Treating take knob separate
to open drawer and close drawer, the work can also be
implemented on opening/closing drawers, cabinets or doors.
In our trial, the stair-like cabinet, as shown in Fig. 1, also
poses a challenge of reachability awareness and obstacle
avoidance. When the object is placed on the lower step,
picking up action must consider that certain directions are
blocked by the step above it.

In the sorting task, the R-LGP planner generated the result
in 2s for 4 steps, with 2 objects correctly placed. It took
longer for table clearing, 17s, to plan the long sequence
with 6 separate steps, which the robot travelled 9m. In both
examples, with our R-LGP solutions, the HSR robot can
perform the task robustly with an optimal and collision-free
trajectory.

C. Reachability graph evaluation

For each environment, we precompute the reachability
graph only once. On average, the reachability graph is built
within 14.2s with 200 samples over the specified workspaces.

We designed the sorting task to evaluate the robustness and
completeness of our reachability graph, as this environment
has more geometric constraints to consider during motion
planning. Figure 7 visualises our reachability graph for this
scenario. The pre-built reachability graph is shown in Fig.
7a. In this step, nodes are validated with a collision-free
configuration state and neighbour edges are all connected.
The generated solution for the whole successful trajectory
is plotted in the red line in Fig. 7b. The solution suffi-
ciently produces a collision-free guidance path that has an
understanding of the robot kinematics and reachability. This
resulting path provides LGP with meaningful heuristic cost
and trajectory guidance. The enhanced graph after a few
queries is also denoted in Fig. 7b. The green lines represent
added nodes and edges while searching for paths. In this
example, the enhancement is mainly around the middle table,
as objects for sorting are randomised on this table. The graph
is updated over time, where edges in collision are removed
and new nodes are added. This reduces planning time for
subsequent queries in the same workspace.

VI. CONCLUSION

R-LGP, our proposed framework, provides a robust so-
lution to TAMP on mobile manipulators, which is tightly
integrated to LGP. The introduction of the reachability graph
not only successfully informs the LGP symbolic planner with

(a) Pre-built

(b) After planning

Fig. 7: Reachability graph before and after planning.

information regarding reachability and mobility capabilities
but also resolves local optima in trajectory optimization. The
reachability-aware heuristic cost helps to prune out infeasible
trajectories at the first layer, hence, reducing failures at the
final full trajectory optimization. As a result, the system is
time-efficient in generating optimal TAMP solution while
respecting robot geometry and kinematics. We presented an
extensive evaluation to validate the framework, including
real-world experiments on the Toyota HSR robot. In compar-
ison to the state-of-the-art PDDLStream in the basic pick and
place task, we reduced path length by 10 times with 6 times
quicker solving time. The sorting task experiment highlighted
the drawbacks of the current LGP framework, where environ-
mental constraints can adversely affect symbolic planning.
Without guidance, the baseline also fails to generate a
collision-free trajectory. Hence, we achieved twice better
success rate and improved completeness of the LGP solver.
While sampling-based motion planning does not provide
optimal solutions in limited time, our proposed reachability
graph integrated to LGP can solve optimal TAMP. An avenue
for future work is pruning task-specific constraints for TAMP
on long-horizon applications. In our current framework, we
are addressing the motion rather than task knowledge, and
we believe pruning will help with scaling up to larger state
spaces.

REFERENCES

[1] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.

[3] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[4] N. J. Nilsson, “Shakey the robot,” Technical note 323, 1984.
[5] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-

bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 4,
no. 1, pp. 265–293, 2021.

[6] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 639–646.

[7] N. Dantam, S. Chaudhuri, and L. Kavraki, “The task motion kit,” IEEE
Robotics & Automation Magazine, vol. PP, pp. 1–1, 05 2018.

[8] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in Robotics: Science and systems, vol. 12, 2016, p. 00052.

[9] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
The International Journal of Robotics Research, vol. 37, no. 10, pp.
1134–1151, 2018.

[10] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 729–746, 2004.

[11] K. Kim, D. Park, and M. J. Kim, “A reachability tree-based algorithm
for robot task and motion planning,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp. 3750–
3756.

[12] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “Pddl-the planning domain
definition language,” 1998.

[13] K. T. Ly, M. Munks, W. Merkt, and I. Havoutis, “Asymptotically
optimized multi-surface coverage path planning for loco-manipulation
in inspection and monitoring,” in IEEE 19th International Conference
on Automation Science and Engineering (CASE). IEEE, 2023.

[14] H. X. Li and B. C. Williams, “Generative planning for hybrid systems
based on flow tubes,” in ICAPS, 2008, pp. 206–213.

[15] C. V. Braun, J. Ortiz-Haro, M. Toussaint, and O. S. Oguz, “Rhh-lgp:
Receding horizon and heuristics-based logic-geometric programming
for task and motion planning,” in 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
13 761–13 768.

[16] D. Driess, O. Oguz, and M. Toussaint, “Hierarchical task and motion
planning using logic-geometric programming (hlgp),” in RSS Work-
shop on Robust Task and Motion Planning, 2019.

[17] A. T. Le, P. Kratzer, S. Hagenmayer, M. Toussaint, and J. Main-
price, “Hierarchical human-motion prediction and logic-geometric
programming for minimal interference human-robot tasks,” in 2021
30th IEEE International Conference on Robot & Human Interactive
Communication (RO-MAN). IEEE, 2021, pp. 7–14.

[18] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains,” in
2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 4044–4051.

[19] J. K. Behrens, R. Lange, and M. Mansouri, “A constraint programming
approach to simultaneous task allocation and motion scheduling for
industrial dual-arm manipulation tasks,” in 2019 International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2019, pp. 8705–
8711.

[20] K. E. Booth, T. T. Tran, G. Nejat, and J. C. Beck, “Mixed-integer and
constraint programming techniques for mobile robot task planning,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 500–507,
2016.

[21] M. Conforti, G. Cornuéjols, G. Zambelli et al., Integer programming.
Springer, 2014, vol. 271.

[22] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-
integer programming in motion planning,” Annual Reviews in Control,
vol. 51, pp. 65–87, 2021.

[23] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[24] P. Culbertson, S. Bandyopadhyay, and M. Schwager, “Multi-robot
assembly sequencing via discrete optimization,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 6502–6509.

[25] M. Lippi and A. Marino, “A mixed-integer linear programming
formulation for human multi-robot task allocation,” in 2021 30th IEEE
International Conference on Robot & Human Interactive Communi-
cation (RO-MAN). IEEE, 2021, pp. 1017–1023.

[26] W. Thomason, M. P. Strub, and J. D. Gammell, “Task and motion in-
formed trees (tmit*): Almost-surely asymptotically optimal integrated
task and motion planning,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 11 370–11 377, 2022.

[27] J.-P. Sleiman, F. Farshidian, and M. Hutter, “Versatile multicontact
planning and control for legged loco-manipulation,” Science Robotics,
vol. 8, no. 81, 2023.

[28] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 521–528.

